Exotic nuclei and beams (IGISOL)

The exotic nuclei and beams group studies properties of nuclei employing Penning-trap mass spectrometry as well as laser and decay spectroscopy at the IGISOL facility. The research conducted in the group furthers our understanding of nuclear structure and provides essential data for nuclear astrophysics, neutrino physics, fundamental interactions as well as for applications.
The exotic nuclei and beams group

Table of contents

Research group type
Research group
Core fields of research
Basic natural phenomena and mathematical thinking
Research areas
Nuclear and accelerator based physics
Faculty
Faculty of Mathematics and Science
Department
Department of Physics

Research group description

Our research takes place in number of other laboratories, such as the  facility in ,  and , the location of the future radioactive beam facility . We are actively involved in work to support the development of international future facilities  and , in close collaboration with , the Helsinki Institute of Physics.

An important form of our international collaboration is also participation in research networks. Recently, our group has benefited from the EU FP7 and Horizon 2020 programs within ENSAR2, CHANDA and nuClock projects. Two new EU EURATOM projects SANDA and ARIEL started in 2019. Our research is also strongly supported by the Academy of Finland.

Selected publications

The "IGISOL Portrait - three decades of research" is a collection of articles describing the research conducted using the ion guide technique at IGISOL.

Ion traps in nuclear physics—Recent results and achievements. T. Eronen, A. Kankainen, and J. Äystö, Progress in Particle and Nuclear Physics 91, 259-293 (2016).

Laser spectroscopy for nuclear structure physics. P. Campbell, I.D. Moore and M.R. Pearson, Progress in Particle and Nuclear Physics 86, 127-180 (2016)

Research

Nuclear Astrophysics

Almost all chemical elements have been created via nuclear reactions in stars. The multimessenger observations, the gravitational wave event GW170817 and its electromagnetic counterparts, gave the first direct evidence that elements heavier than iron are created via the rapid neutron capture process (the r process) in a merger of two neutron stars. New fascinating observations are anticipated in coming years. In order to understand and model the r process in detail, precise data on the properties of neutron-rich nuclei, such as their masses, are required. These can be obtained with the JYFLTRAP Penning trap. Recently commissioned PI-ICR technique provides new opportunities for mass measurements of exotic nuclei at JYFLTRAP.

The properties of exotic nuclei and their reactions play also a key role in novae, type I x-ray bursts, and in the core collapse of supernovae. Our aim is to provide crucial and more reliable nuclear physics inputs for modeling these astronomical events and related nucleosynthesis. The experimental programme is mainly carried out at the IGISOL facility, and is complemented by experiments at other international radioactive ion beam facilities. 

Weak interaction studies

Weak interaction is one of the four known fundamental interactions of nature. It is, for example, responsible for nuclear beta decay process, where proton is transformed to neutron or vice versa in the nucleus of an atom. At the same time also a positron and a neutrino (or electron and an anti-neutrino) is emitted. The energy released in the decay is distributed between the three particles -- each time in differently, underlying the challenges in studying beta decay.

The amount of energy released in the decay (also known as the Q-value) is one of the key quantities in these studies. Recently, through advances in atomic mass spectrometry, the most precise way of measuring a Q-value is through a mass difference measurement of the decay-parent and daughters. The energy is obtained using the mass-energy equivalence formula E=mc2, where E is the decay energy, m the mass difference and c the speed of light.

Decay spectroscopy with purified beams

ecay spectroscopy studies are often hampered by contaminant radioactive decays from isotopes with high production rates. At IGISOL, radioactive ion beams can be purified in several ways. The 55 degree dipole magnet is used for a rough mass separation. The JYFLTRAP Penning trap, and in future the MR-TOF multi-reflection time-of-flight mass spectrometer, can be used to select the isotope or even the isomeric state of interest for decay spectroscopy studies.

The research is done in collaboration with international research groups. Several detector arrays have utilized the ultra-pure beams provided by the facility, such as BELEN beta-delayed neutron detector, DTAS total absorption spectrometer, the TASISpec detector setup, and the University of Warsaw Ge-detector array (shown in the photo). The six germanium detectors making the base of the Ge-detector array were financed within the project ”Multidetector spectrometer of low-energy gamma photons” prepared by J. Kurpeta, A. Płochocki, T. Rza̧ca-Urban and W. Urban, granted by the Polish Ministry of Science and Higher Education in 2013 (decision no. 6341/IA/115/2013).

In 2019, the MONSTER (Modular Neutron Spectrometer) designed for the FAIR facility was successfully commissioned with 85As at IGISOL in March 2019, see the press release. Prospects for future MONSTER experiments at IGISOL look bright. 

Fission studies

Charged particle induced fission has since 1980's utilised at IGISOL to produce neutron rich nuclei for spectroscopy.  Since the ions extracted from the ion guide are primary fission products, and ions of any element can be extracted within tens of milliseconds, the technique is suitable for fission product yield distribution measurements, allowing studies of the fission process itself. Identification of the fission products on the basis of their mass with JYFLTRAP further enhances the FY measurements. In addition to charged particle induced fission, neutron induced fission can be studied utilising a recently build neutron converter. 

Optical spectroscopy

The structure and properties of atomic nuclei can be measured using many different techniques. One important class of techniques uses lasers to probe the energy levels of the electrons which are bound to the nucleus, in order to access the electromagnetic nuclear moments, the nuclear spin, and the changes in the size of the nucleus. These observables provide unique insight into the configuration of atomic nuclei, the purity of their wavefunctions, their shape and deformation and their nuclear sizes. Thus, they are exceptionally potent tests for nuclear models.

Optical spectroscopy techniques yield very precise values for these nuclear observables and can be applied even to short-lived isotopes produced with relatively low production rates. At the IGISOL laboratory, we currently have three experimental laser spectroscopy stations which offer a different compromise between experimental efficiency and resolution.

In addition to these spectroscopy experiments, we also house two experiments which rely on lasers to manipulate the properties of atoms or ions placed inside of traps. The aim of these projects is to look for physics beyond the standard model through precision beta-decay studies (MORA), and to realize the first experimental demonstration of gamma-ray coherent emission by means of super-radiance in a Bose-Einstein condensate of 135mCs isomers (GAMMALAS).

IGISOL facility

The IGISOL (Ion Guide Isotope Separation On-Line) mass separator is the heart of the research infrastructure of the  -group. The facility is located in the newer part of the JYFL Accelerator Laboratory built around 10 years ago. IGISOL produces a broad range of low-energy (30 keV) radioactive and stable ion beams for studies of atomic nuclei and their properties. 

IGISOL facility

Ion guides

The radioactive ions are produced with different kinds of techniques at the IGISOL (Ion Guide Isotope Separator On-Line) facility. We do active research and development work related to the ion guide method, gas cells and related production techniques.

The IGISOL method is fast, sub-ms technique for producing low-energy radioactive ion beams. It was developed in Jyväskylä in early 1980s. The IGISOL technique is chemically insensitive, and thus makes it possible to produce radioactive beams of all elements, including refractory elements usually difficult to produce at ISOL facilities. The basic idea, stopping of ions in gas with a swift extraction of radioactive ion beams, has been adopted in many major accelerator facilities worldwide over the years.

For example the following ion guides or ion sources have been used or developed at IGISOL:

  • Light-ion ion guide for fusion-evaporation reactions with p or d beams
  • Heavy-ion ion guide HIGISOL for heavy ion fusion-evaporation reactions
  • Fission ion guide for proton- or deuteron-induced fission
  • Fission ion guide designed for neutron-induced fission
  • Ion guide for multinucleon-transfer reactions
  • Hot cavity laser ion source 
  • Off-line ion source station for stable ion beams

    References to main publications describing the technique


  • Hyperfine Interactions 223, 17 (2014). [Open Access: ]
    I. D. Moore, P. Dendooven, J. Ärje

  • Nuclear Instruments and Methods in Physics Research B 222 (2004) 632
    J. Huikari et al.

  • Nuclear Physics A 693 (2001) 477–494
    J. Äystö

  • Review of Scientific Instruments 86, 123501 (2015)
    M. Reponen et al.

  • Nuclear Instruments and Methods in Physics Research B 376, 46 (2016). 
    [Open Access: ]
    D. Gorelov et al.

  • European Physical Journal A 51, 59 (2015). [Open Access: ]
    A. Al-Adili et al.

  • Nuclear Instruments and Methods in Physics Research Section A 263, 382-383 (2020).
    [Open Access: ]
    M. Vilen et al.

Radio-Frequency Quadrupole (RFQ) Cooler and Buncher

The RFQ cooler and buncher cools the ions and converts the continuous radioactive ion beam into narrow ion bunches. The ejected bunches are further used in different kinds of ion trapping and laser spectroscopy experiments. The RFQ cooler and buncher was developed and commissioned at IGISOL already in early 2000s. Details can be found from:

  1. V. Virtanen et al., Nucl. Instrum. Meth. Phys. Res. A 1072 (2025) 170186

     
  2. A. Nieminen et al., Nucl. Instrum. Meth. Phys. Res. A 469 (2001) 244

     
  3. A. Nieminen et al., Phys. Rev. Lett. 88 (2002) 094801

A new cooler-buncher for has also been designed, constructed and commissioned at IGISOL:

  • A. Jaries et al., Nucl. Instrum. Meth. Phys. Res. A 1073 (2025) 170273

JYFLTRAP Double Penning Trap Mass Spectrometer

JYFLTRAP is a cylindrical double Penning trap mass spectrometer at IGISOL. It is located inside a 7 T superconducting solenoid.

Details of the trap and used measurement methods can be found from:



T. Eronen et al., European Physical Journal A 48, 46 (2012). [Open Access: ].


D.A. Nesterenko et al., European Physical Journal A 54, 154 (2018). [Open Access: ]


D.A. Nesterenko et al., European Physical Journal A 57, 302 (2021). Open Access.

Publications

Publication
2025
Available through Open Access

Nuclear Physics A
Tortorelli, Nazarena
Reiter, Moritz Pascal
Rink, Ann Kathrin
Purushothaman, Sivaji
Ayet, San Andrés Samuel
Bergmann, Julian
Dickel, Timo
Diwisch, Marcel
Ebert, Jens
Geissel, Hans
Greiner, Florian
Haettner, Emma
Hornung, Christine
Kelic-Heil, Aleksandra
Knoebel, Ronja
Lippert, Wayne
Miskun, Ivan
Moore, Iain D.
Pietri, Stephane
Plaß, Wolfgang R.
Pohjalainen, Ilkka
Prochazka, Andrej
Scheidenberger, Christoph
Takechi, Maya
Thirolf, Peter G.
Weick, Helmut
Winfield, John
Xu, Xiaodong
Publication
2025
Available through Open Access

Physics Letters B
Zhang, G.
Polettini, M.
Mengoni, D.
Benzoni, G.
Huang, Z.
Górska, M.
Blazhev, A.
Fraile, L.M.
Gargano, A.
de Gregorio, G.
Nowacki, F.
Aggez, G.
Ahmed, U.
Aktas, O.
Al-Aqeel, M.
Alayed, B.
Albers, H.M.
Algora, A.
Alhomaidhi, S.
Amjad, F.
Appleton, C.
Arıcı, T.
Armstrong, M.
Arnés, B.Q.
Astier, A.
Balogh, M.
Banerjee, A.
Bazzacco, D.
Benito Garcìa, J.
Bottoni, S.
Boutachkov, P.
Bracco, A.
Bruce, A.
Brugnara, D.
Bruno, C.
Camera, F.
Cederwall, B.
Cicerchia, M.
Chishti, M.M.R.
Corsi, A.
Cortes, M.L.
Cox, D.
Crespi, F.C.L.
Das, B.
Davidson, T.
de Angelis, G.
Dickel, T.
Doncel, M.
Ertoprak, A.
Esmaylzadeh, A.
Gaffney, L.
Galtarossa, F.
Gamba, E.R.
Garbe, J.
Genna, D.
Gerl, J.
Goasduff, A.
Gottardo, A.
Gozzelino, A.
Grahn, T.
Ha, J.
Haettner, E.
Hall, O.
Harkness-Brennan, L.
Heggen, H.
Hornung, C.
Hrabar, Y.
Hu, S.P.
Hubbard, N.
Ide, K.E.
Illana Sison, A.
Jazrawi, S.
John, P.R.
Jolie, J.
Jones, C.
Joss, D.
Judson, D.
Karayonchev, V.
Kazantseva, E.
Kern, R.
Kiss, G.G.
Knafla, L.
Knöbel, R.
Kojouharov, I.
Korgul, A.
Korten, W.
Koseoglou, P.
Kostyleva, D.
Kurtukian-Nieto, T.
Kosir, G.
Kurz, N.
Kuti, I.
Labiche, M.
Lenzi, S.M.
Leoni, S.
Li, G.-S.
Liu, Z.
Llanos Expósito, M.
Lozeva, R.
Lu, J.B.
Luoma, M.
Mantovani, G.
Marchi, T.
Mazzocco, M.
Menegazzo, R.
Mertzimekis, T.J.
Mikolajczuk, M.
Million, B.
Mistry, A.K.
Mukha, I.
Nacher, E.
Napoli, D.R.
Nara Singh, B.S.
Orrigo, S.E.A.
Page, R.D.
Papadakis, P.
Pasqualato, G.
Pellumaj, J.
Pelonis, S.
Peréz Vidal, R.M.
Petrache, C.M.
Petrovic, J.
Pietralla, N.
Pietri, S.
Pigliapoco, S.
Podolyák Zs.
Porzio, C.
Raggio, A.
Recchia, F.
Regan, P.H.
Régis, J.M.
Reiter, P.
Rezynkina, K.
Rocco, E.
Rodriguez Murias, J.
Rösch, H.
Roy, P.
Rubio, B.
Rudigier, M.
Ruotsalainen, P.
Sahin, E.
Sarmiento, L.G.
Satrazani, M.-M.
Schaffner, H.
Scheidenberger Ch.
Sexton, L.
Sharma, A.
Siciliano, M.
Simpson, J.
Smallcombe, J.
Söderström, P.
Sohler, D.
Sood, A.
Soramel, F.
Sun, B.-H.
Sun, H.B.
Sveiczer, A.
Szegedi, N.
Tanaka, Y.K.
Valiente-Dobón, J.J.
Vasileiou, P.
Vesic, J.
von Tresckow, M.
Waring, L.
Watanabe, H.
Weick, H.
Werner, V.
Wiederhold, J.
Wieland, O.
Wimmer, K.
Wollersheim, H.-J.
Woods, P.
Wu, J.
Yaneva, A.
Zanon, I.
Zhao, J.
Zhang, H.Q.
Zhang, G.L.
Zheng, K.K.
Zhu, L.H.
Zidarova, R.
Ziliani, S.
Zyriliou, A.
Publication
2025
Available through Open Access

Physical Review C
van den Borne, B.
Stryjczyk, M.
de Groote, R. P.
Kankainen, A.
Nesterenko, D. A.
Ayoubi, L. Al.
Ascher, P.
Beliuskina, O.
Bissell, M. L.
Bonnard, J.
Campbell, P.
Canete, L.
Cheal, B.
Delafosse, C.
de Roubin, A.
Devlin, C. S.
Eronen, T.
Ruiz, R. F. Garcia
Geldhof, S.
Gerbaux, M.
Gins, W.
Grévy, S.
Hukkanen, M.
Husson, A.
Imgram, P.
Koszorús, Á.
Mathieson, R.
Moore, I. D.
Neyens, G.
Pohjalainen, I.
Reponen, M.
Rinta-Antila, S.
Vilen, M.
Virtanen, V.
Weaver, A. P.
Zadvornaya, A.
Publication
2025
Available through Open Access

Physical Review C
Stryjczyk, M.
Jaries, A.
Kankainen, A.
Eronen, T.
Publication
2025
Available through Open Access

Communications Physics
Montes, Plaza Adrian
Pakarinen, Janne
Papadakis, Philippos
Herzberg, Rolf-Dietmar
Julin, Rauno
Rodríguez, R.
Briscoe, Andrew D.
Illana, Andrés
Ojala, Joonas
Ruotsalainen, Panu
Uusikylä, Eetu
Alayed, Betool
Alharbi, Ahmed
Alonso-Sañudo, Odette
Auranen, Kalle
Bogdanoff, Ville
Chadderton, Jamie
Esmaylzadeh, Arwin
Fransen, Christoph
Grahn, Tuomas
Greenlees, Paul T.
Jolie, Jan
Joukainen, Henna
Jutila, Henri
Lakenbrink, Casper-David
Leino, Matti
Louko, Jussi
Luoma, Minna
McCarter, Adam
Nara, Singh Bondili Sreenivasa
Rahkila, Panu
Raggio, Andrea
Romero, Jorge
Sarén, Jan
Satrazani, Maria-Magdalini
Stryjczyk, Marek
Sullivan, Conor M.
Tolosa-Delgado, Álvaro
Uusitalo, Juha
von Spee, Franziskus
Warbinek, Jessica
Zimba, George L.
Publication
2025
Available through Open Access

Physics Letters B
Stryjczyk, M.
Jaries, A.
Ryssens, W.
Bender, M.
Kankainen, A.
Eronen, T.
Ge, Z.
Moore, I.D.
Mougeot, M.
Raggio, A.
Ruotsalainen, J.
Publication
2025
Available through Open Access

Physical Review C
Cannarozzo, Simone
Pomp, Stephan
Solders, Andreas
Al-Adili, Ali
Gao, Zhihao
Lantz, Mattias
Penttilä, Heikki
Kankainen, Anu
Moore, Iain
Eronen, Tommi
Ge, Zhuang
Ruotsalainen, Jouni
Mougeot, Maxime
Virtanen, Ville
Jaries, Arthur
Stryjczyk, Marek
Raggio, Andrea
Publication
2025
Available through Open Access

Nature Communications
Athanasakis-Kaklamanakis, M.
Wilkins, S. G.
Skripnikov, L. V.
Koszorús, Á.
Breier, A. A.
Ahmad, O.
Au, M.
Bai, S. W.
Belošević, I.
Berbalk, J.
Berger, R.
Bernerd, C.
Bissell, M. L.
Borschevsky, A.
Brinson, A.
Chrysalidis, K.
Cocolios, T. E.
de Groote, R. P.
Dorne, A.
Fajardo-Zambrano, C. M.
Field, R. W.
Flanagan, K. T.
Franchoo, S.
Garcia Ruiz, R. F.
Gaul, K.
Geldhof, S.
Giesen, T. F.
Hanstorp, D.
Heinke, R.
Imgram, P.
Isaev, T. A.
Kyuberis, A. A.
Kujanpää, S.
Lalanne, L.
Lassègues, P.
Lim, J.
Liu, Y. C.
Lynch, K. M.
McGlone, A.
Mei, W. C.
Neyens, G.
Nichols, M.
Nies, L.
Pašteka, L. F.
Perrett, H. A.
Raggio, A.
Reilly, J. R.
Rothe, S.
Smets, E.
Udrescu, S.-M.
van den Borne, B.
Wang, Q.
Warbinek, J.
Wessolek, J.
Yang, X. F.
Zülch, C.
Publication
2025
Available through Open Access

Physical Review C
Mukai, M.
Hirayama, Y.
Schury, P.
Watanabe, Y. X.
Hashimoto, T.
Hinohara, N.
Jeong, S. C.
Miyatake, H.
Moon J., Y.
Niwase, T.
Reponen, M.
Rosenbusch, M.
Ueno, H.
Wada, M.
Publication
2025
Available through Open Access

Physical Review C
Abramuk, A.
Kurpeta, J.
Urban, W.
Rząca-Urban, T.
Eronen, T.
Jokinen, A.
Kankainen, A.
Moore I., D.
Penttilä, H.
Pomorski, M.
Rinta-Antila, S.
Smith A., G.
Simpson G., S.
Greene J., P.
Publication
2025
Available through Open Access

Nuclear Physics A
Ali, Mollaebrahimi
Constantin, Paul
Dickel, Timo
Amanbayev, Daler
Glöckner, Simeon
Haettner, Emma
Kar, Debodyuti
Kripko-Koncz, Gabriella
Kumar, Deepak
Mahajan, Kriti
Mardor, Israel
Morrissey, David
Narang, Meetika
Plaß, Wolfgang R.
Shrayer, Amir
Tortorelli, Nazarena
Yu, Jiajun
Ahokas, Jasmiina
Amorim, Beatriz
Ayet, San Andrés Samuel
Bagchi, Soumya
Bajzek, Martin
Balabanski, Dimiter
Bergmann, Julian
Botsiou, Konstantina
Charviakova, Volha
Eronen, Tommi
Ge, Zhuang
Harakeh, Muhsin
Hornung, Christine
Hubbard, Nic
Jaries, Arthur
Kalantar-Nayestanaki, Nasser
Kankainen, Anu
Karmakar, Annesha
Lozeva, Radomira
Rodríguez, Sánchez José Luis
Mitsiou, Iliana
Reiter, Moritz Pascal
Piau, Valentin
Podolyak, Zsolt
Prajapat, Rinku
Prajapati, Divyang
Purushothaman, Sivaji
Reponen, Mikael
Rocco, Elena
Ruotsalainen, Jouni
Scheidenberger, Christoph
Simonov, Makar
Kostyleva, Daria
Singh, Suraj Kumar
Spataru, Anamaria
State, Alexandru
Stefanescu, Ionut
Tanaka, Yoshiki K.
Trache, Livius
Welde, Leonard
Zhao, Jianwei
Publication
2025
Available through Open Access

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Jaries, A.
Ruotsalainen, J.
Kronholm, R.
Eronen, T.
Kankainen, A.

Research group