Tutkimme kvanttimekaanisia ja klassisia ilmiöitä nanokokoisissa elektronisissa rakenteissa. Aiheita ovat mm. suprajohtavuus, magnetismi, topologiset materiaalit ja avoimet kvanttisysteemit. Yleinen lähtökohtamme on rakentaa kullekin kvanttirakenteelle sopiva matalan energian teoria. Teemme projekteissamme yhteistyötä maailman johtavien kokeellisten ryhmien kanssa.
³§¾±²õä±ô±ô²â²õ±ô³Ü±ð³Ù³Ù±ð±ô´Ç
°Õ³Ü³Ù°ì¾±³¾³Ü²õ°ù²â³ó³¾Ã¤n tyyppi
°Õ³Ü³Ù°ì¾±³¾³Ü²õ°ù²â³ó³¾Ã¤
Tutkimuksen painoala
Luonnon perusilmiöt ja matemaattinen ajattelu
Tutkimusalueet
Nanotiede
Materiaalifysiikka
Toinen kvanttivallankumous
Tiedekunta
Matemaattis-luonnontieteellinen tiedekunta
Osasto
Fysiikan laitos
°Õ³Ü³Ù°ì¾±³¾³Ü²õ°ù²â³ó³¾Ã¤n kuvaus
Present research topics
Flat-band superconductivity and magnetism. We study interacting phases in systems with exotic electronic dispersion. We participate in the , with the grand idea of reaching room-temperature superconductivity by 2033.
Dynamic properties of quantum materials. Special focus is on 2D materials with strong spin-orbit interaction, superconductors, magnets, and especially collective modes in them.
Silicon-based Josephson quantum electronics. Special focus is on Josephson diode effects and general non-reciprocal transport, along with gateable Josephson junctions.
Other recent research topics
Electronic properties of graphite and their relation to topological media. In particular, we seek models to explain high-temperature interface superconductivity observed in graphite. We are also extending such studies to generic artificial topological structures.
Nonequilibrium and thermoelectric effects in superconductor-ferromagnetic hybrid structures. Recent studies include characterisation of nonequilibrium modes in this type of systems, and the possible use of such systems as efficient radiation detectors. The latter was done especially in the FET Open SUPERTED project.
Magnetization dynamics especially in superconductor/ferromagnet heterostructures. The key problems are the studies of spin torque and its reciprocal effect, spin pumping.
Open quantum systems in various disguises. We have especially studied quantum optomechanics and, in particular, their microwave realisations. At present, we study a magnetic variation of optomechanics, so-called magnomechanics, as well as measurements of strong coupling between light and molecules which is often termed molecular polaritonics.