Eksoottiset ytimet ja ionisuihkut (IGISOL)

±õ³Ò±õ³§°¿³¢-³Ù³Ü³Ù°ì¾±³¾³Ü²õ°ù²â³ó³¾Ã¤ssä tutkitaan ytimien ominaisuuksia monipuolisilla menetelmillä, kuten ioniloukuilla, hajoamis- ja laserspektroskopialla. Tutkimus tuottaa tietoa ydinten rakenteesta sekä tarjoaa olennaista dataa ydinastrofysiikan, neutriinofysiikan, perusvuorovaikutusten tutkimiseen sekä sovelluksia varten.
The exotic nuclei and beams group
±õ³Ò±õ³§°¿³¢-³Ù³Ü³Ù°ì¾±³¾³Ü²õ°ù²â³ó³¾Ã¤

³§¾±²õä±ô±ô²â²õ±ô³Ü±ð³Ù³Ù±ð±ô´Ç

°Õ³Ü³Ù°ì¾±³¾³Ü²õ°ù²â³ó³¾Ã¤n tyyppi
°Õ³Ü³Ù°ì¾±³¾³Ü²õ°ù²â³ó³¾Ã¤
Tutkimuksen painoala
Luonnon perusilmiöt ja matemaattinen ajattelu
Tutkimusalueet
Ydin- ja kiihdytinpohjainen fysiikka
Tiedekunta
Matemaattis-luonnontieteellinen tiedekunta
Osasto
Fysiikan laitos

°Õ³Ü³Ù°ì¾±³¾³Ü²õ°ù²â³ó³¾Ã¤n kuvaus

°Õ³Ü³Ù°ì¾±³¾³Ü²õ°ù²â³ó³¾Ã¤ hyödyntää ensisijaisesti IGISOL-tutkimuslaitteistoa Jyväskylän yliopiston kiihdytinlaboratoriossa, mutta olemme myös aktiivisia muissa kansainvälisissä laboratorioissa tehtävissä kokeissa (esim.   ),  ja , jonne rakentuu uusi -tutkimuskeskus). 

Valittuja julkaisuja

The "IGISOL Portrait - three decades of research" is a collection of articles describing the research conducted using the ion guide technique at IGISOL.

Ion traps in nuclear physics—Recent results and achievements. T. Eronen, A. Kankainen, and J. Äystö, Progress in Particle and Nuclear Physics 91, 259-293 (2016).

Laser spectroscopy for nuclear structure physics. P. Campbell, I.D. Moore and M.R. Pearson, Progress in Particle and Nuclear Physics 86, 127-180 (2016)

Tutkimuksesta

Nuclear Astrophysics

Almost all chemical elements have been created via nuclear reactions in stars. The multimessenger observations, the gravitational wave event GW170817 and its electromagnetic counterparts, gave the first direct evidence that elements heavier than iron are created via the rapid neutron capture process (the r process) in a merger of two neutron stars. New fascinating observations are anticipated in coming years. In order to understand and model the r process in detail, precise data on the properties of neutron-rich nuclei, such as their masses, are required. These can be obtained with the JYFLTRAP Penning trap. Recently commissioned PI-ICR technique provides new opportunities for mass measurements of exotic nuclei at JYFLTRAP.

The properties of exotic nuclei and their reactions play also a key role in novae, type I x-ray bursts, and in the core collapse of supernovae. Our aim is to provide crucial and more reliable nuclear physics inputs for modeling these astronomical events and related nucleosynthesis. The experimental programme is mainly carried out at the IGISOL facility, and is complemented by experiments at other international radioactive ion beam facilities. 

Weak interaction studies

Weak interaction is one of the four known fundamental interactions of nature. It is, for example, responsible for nuclear beta decay process, where proton is transformed to neutron or vice versa in the nucleus of an atom. At the same time also a positron and a neutrino (or electron and an anti-neutrino) is emitted. The energy released in the decay is distributed between the three particles -- each time in differently, underlying the challenges in studying beta decay.

The amount of energy released in the decay (also known as the Q-value) is one of the key quantities in these studies. Recently, through advances in atomic mass spectrometry, the most precise way of measuring a Q-value is through a mass difference measurement of the decay-parent and daughters. The energy is obtained using the mass-energy equivalence formula E=mc2, where E is the decay energy, m the mass difference and c the speed of light.

Decay spectroscopy with purified beams

ecay spectroscopy studies are often hampered by contaminant radioactive decays from isotopes with high production rates. At IGISOL, radioactive ion beams can be purified in several ways. The 55 degree dipole magnet is used for a rough mass separation. The JYFLTRAP Penning trap, and in future the MR-TOF multi-reflection time-of-flight mass spectrometer, can be used to select the isotope or even the isomeric state of interest for decay spectroscopy studies.

The research is done in collaboration with international research groups. Several detector arrays have utilized the ultra-pure beams provided by the facility, such as BELEN beta-delayed neutron detector, DTAS total absorption spectrometer, the TASISpec detector setup, and the University of Warsaw Ge-detector array (shown in the photo). The six germanium detectors making the base of the Ge-detector array were financed within the project â€Multidetector spectrometer of low-energy gamma photons†prepared by J. Kurpeta, A. PÅ‚ochocki, T. Rza̧ca-Urban and W. Urban, granted by the Polish Ministry of Science and Higher Education in 2013 (decision no. 6341/IA/115/2013).

In 2019, the MONSTER (Modular Neutron Spectrometer) designed for the FAIR facility was successfully commissioned with 85As at IGISOL in March 2019, see the press release. Prospects for future MONSTER experiments at IGISOL look bright. 

Fission studies

Charged particle induced fission has since 1980's utilised at IGISOL to produce neutron rich nuclei for spectroscopy.  Since the ions extracted from the ion guide are primary fission products, and ions of any element can be extracted within tens of milliseconds, the technique is suitable for fission product yield distribution measurements, allowing studies of the fission process itself. Identification of the fission products on the basis of their mass with JYFLTRAP further enhances the FY measurements. In addition to charged particle induced fission, neutron induced fission can be studied utilising a recently build neutron converter. 

Optical spectroscopy

The structure and properties of atomic nuclei can be measured using many different techniques. One important class of techniques uses lasers to probe the energy levels of the electrons which are bound to the nucleus, in order to access the electromagnetic nuclear moments, the nuclear spin, and the changes in the size of the nucleus. These observables provide unique insight into the configuration of atomic nuclei, the purity of their wavefunctions, their shape and deformation and their nuclear sizes. Thus, they are exceptionally potent tests for nuclear models.

Optical spectroscopy techniques yield very precise values for these nuclear observables and can be applied even to short-lived isotopes produced with relatively low production rates. At the IGISOL laboratory, we currently have three experimental laser spectroscopy stations which offer a different compromise between experimental efficiency and resolution.

In addition to these spectroscopy experiments, we also house two experiments which rely on lasers to manipulate the properties of atoms or ions placed inside of traps. The aim of these projects is to look for physics beyond the standard model through precision beta-decay studies (MORA), and to realize the first experimental demonstration of gamma-ray coherent emission by means of super-radiance in a Bose-Einstein condensate of 135mCs isomers (GAMMALAS).

IGISOL -laitteisto

The IGISOL (Ion Guide Isotope Separation On-Line) mass separator is the heart of the research infrastructure of the  -group. The facility is located in the newer part of the JYFL Accelerator Laboratory built around 10 years ago. IGISOL produces a broad range of low-energy (30 keV) radioactive and stable ion beams for studies of atomic nuclei and their properties. 

IGISOL facility

Ion guides

The radioactive ions are produced with different kinds of techniques at the IGISOL (Ion Guide Isotope Separator On-Line) facility. We do active research and development work related to the ion guide method, gas cells and related production techniques.

The IGISOL method is fast, sub-ms technique for producing low-energy radioactive ion beams. It was developed in Jyväskylä in early 1980s. The IGISOL technique is chemically insensitive, and thus makes it possible to produce radioactive beams of all elements, including refractory elements usually difficult to produce at ISOL facilities. The basic idea, stopping of ions in gas with a swift extraction of radioactive ion beams, has been adopted in many major accelerator facilities worldwide over the years.

For example the following ion guides or ion sources have been used or developed at IGISOL:

  • Light-ion ion guide for fusion-evaporation reactions with p or d beams
  • Heavy-ion ion guide HIGISOL for heavy ion fusion-evaporation reactions
  • Fission ion guide for proton- or deuteron-induced fission
  • Fission ion guide designed for neutron-induced fission
  • Ion guide for multinucleon-transfer reactions
  • Hot cavity laser ion source 
  • Off-line ion source station for stable ion beams

    References to main publications describing the technique


  • Hyperfine Interactions 223, 17 (2014). [Open Access: ]
    I. D. Moore, P. Dendooven, J. Ärje

  • Nuclear Instruments and Methods in Physics Research B 222 (2004) 632
    J. Huikari et al.

  • Nuclear Physics A 693 (2001) 477–494
    J. Äystö

  • Review of Scientific Instruments 86, 123501 (2015)
    M. Reponen et al.

  • Nuclear Instruments and Methods in Physics Research B 376, 46 (2016). 
    [Open Access: ]
    D. Gorelov et al.

  • European Physical Journal A 51, 59 (2015). [Open Access: ]
    A. Al-Adili et al.

  • Nuclear Instruments and Methods in Physics Research Section A 263, 382-383 (2020).
    [Open Access: ]
    M. Vilen et al.

Radio-Frequency Quadrupole (RFQ) Cooler and Buncher

The RFQ cooler and buncher cools the ions and converts the continuous radioactive ion beam into narrow ion bunches. The ejected bunches are further used in different kinds of ion trapping and laser spectroscopy experiments. The RFQ cooler and buncher was developed and commissioned at IGISOL already in early 2000s. Details can be found from:

  1. A. Nieminen et al., Nucl. Instrum. Meth. Phys. Res. A 469 (2001) 244
       
  2. A. Nieminen et al., Phys. Rev. Lett. 88 (2002) 094801
     

JYFLTRAP Double Penning Trap Mass Spectrometer

JYFLTRAP is a cylindrical double Penning trap mass spectrometer at IGISOL. It is located inside a 7 T superconducting solenoid.

Details of the trap and used measurement methods can be found from:



T. Eronen et al., European Physical Journal A 48, 46 (2012). [Open Access: ].


D.A. Nesterenko et al., European Physical Journal A 54, 154 (2018). [Open Access: ]


D.A. Nesterenko et al., European Physical Journal A 57, 302 (2021). Open Access.

Julkaisut

Julkaisu
2024
Saatavilla Open Access kautta

Physical Review C
Zimba, G. L.
Ruotsalainen, P.
De Gregorio, G.
de Angelis, G.
Sarén, J.
Uusitalo, J.
Auranen, K.
Briscoe A., D.
Ge, Z.
Grahn, T.
Greenlees, P. T.
Illana, A.
Jenkins, D. G.
Joukainen, H.
Julin, R.
Jutila, H.
Kankainen, A.
Louko, J.
Luoma, M.
Ojala, J.
Pakarinen, J.
Raggio, A.
Rahkila, P.
Romero, J.
Stryjczyk, M.
Tolosa-Delgado, A.
Wadsworth, R.
Zadvornaya, A.
Julkaisu
2024
Saatavilla Open Access kautta

Physics Letters B
Canete, L.
Giraud, S.
Kankainen, A.
Bastin, B.
Nowacki, F.
Ascher, P.
Eronen, T.
Girard Alcindor, V.
Jokinen, A.
Khanam, A.
Moore, I. D.
Nesterenko, D.
De Oliveira, F.
Penttilä, H.
Petrone, C.
Pohjalainen, I.
De Roubin, A.
Rubchenya, V.
Vilen, M.
Äystö, J.
Julkaisu
2024
Saatavilla Open Access kautta

Physical Review C
Beliuskina, O.
Nesterenko, D. A.
Jaries, A.
Stryjczyk, M.
Kankainen, A.
Canete, L.
de Groote, R. P.
Delafosse, C.
Eronen, T.
Ge, Z.
Geldhof, S.
Gins, W.
Hukkanen, M.
Jokinen, A.
Moore, I. D.
Mougeot, M.
Nikas, S.
Penttilä, H.
Pohjalainen, I.
Raggio, A.
Reponen, M.
Rinta-Antila, S.
de Roubin, A.
Ruotsalainen, J.
Vilen, M.
Virtanen, V.
Zadvornaya, A.
Julkaisu
2024
Saatavilla Open Access kautta

Physics Letters B
de Groote, R. P.
Nesterenko, D. A.
Kankainen, A.
Bissell, M.L.
Beliuskina, O.
Bonnard, J.
Campbell, P.
Canete, L.
Cheal, B.
Delafosse, C.
de Roubin, A.
Devlin, C.S.
Dobaczewski, J.
Eronen, T.
Garcia, Ruiz R. F.
Geldhof, S.
Gins, W.
Hukkanen, M.
Imgram, P.
Mathieson, R.
Koszorús, Ã.
Moore, I.D.
Pohjalainen, I.
Reponen, M.
van den Borne, B.
Vilén, M.
Zadvornaya, S.
Julkaisu
2024
Saatavilla Open Access kautta

Scientific Reports
Lerttraikul, Kittitat
Rattanasakuldilok, Wirunchana
Pakornchote, Teerachote
Bovornratanaraks, Thiti
Klanurak, Illias
Taychatanapat, Thiti
Srathongsian, Ladda
Seriwatanachai, Chaowaphat
Kanjanaboos, Pongsakorn
Chatraphorn, Sojiphong
Kittiwatanakul, Salinporn
Julkaisu
2024
Saatavilla Open Access kautta

Astrophysical Journal
JUNO Collaboratorion
Julkaisu
2024
Saatavilla Open Access kautta

International Conference on Topics in Astroparticle and Underground Physics
Trzaska, Wladyslaw Henryk
Barzilov, Alex
Enqvist, Timo
Jędrzejczak, Karol
Kasztelan, Marcin
Kuusiniemi, Pasi
Loo, Kai
Orzechowski, Jerzy
Słupecki, Maciej
Szabelski, Jacek
Ward, Tom
Julkaisu
2024
Saatavilla Open Access kautta

European Physical Journal A
Koszorús, Ã.
de Groote, R. P.
Cheal, B.
Campbell, P.
Moore, I. D.
Julkaisu
2024
Saatavilla Open Access kautta

Physics Letters B
Illana, A.
Pérez-Vidal, R.M.
Stramaccioni, D.
Valiente-Dobón, J.J.
Rodriguez, T.R.
Robledo, L.M.
Poves, A.
Auranen, K.
Beliuskina, O.
Delafosse, C.
Eronen, T.
Ge, Z.
Geldhof, S.
Gins, W.
Grahn, T.
Greenlees, P.T.
Joukainen, H.
Julin, R.
Jutila, H.
Kankainen, A.
Leino, M.
Louko, J.
Luoma, M.
Nesterenko, D.
Ojala, J.
Pakarinen, J.
Rahkila, P.
Ruotsalainen, P.
Sandzelius, M.
Sarén, J.
Uusitalo, J.
Zimba, G.L.
Julkaisu
2024
Saatavilla Open Access kautta

Reports on Progress in Physics
Arrowsmith-Kron, Gordon
Athanasakis-Kaklamanakis, Michail
Au, Mia
Ballof, Jochen
Berger, Robert
Borschevsky, Anastasia
Breier, Alexander A
Buchinger, Fritz
Budker, Dmitry
Caldwell, Luke
Charles, Christopher
Dattani, Nike
de Groote, Ruben P
DeMille, David
Dickel, Timo
Dobaczewski, Jacek
Düllmann, Christoph E
Eliav, Ephraim
Engel, Jonathan
Fan, Mingyu
Flambaum, Victor
Flanagan, Kieran T
Gaiser, Alyssa N
Garcia, Ruiz Ronald F
Gaul, Konstantin
Giesen, Thomas F
Ginges, Jacinda S M
Gottberg, Alexander
Gwinner, Gerald
Heinke, Reinhard
Hoekstra, Steven
Holt, Jason D
Hutzler, Nicholas R
Jayich, Andrew
Karthein, Jonas
Leach, Kyle G
Madison, Kirk W
Malbrunot-Ettenauer, Stephan
Miyagi, Takayuki
Moore, Iain D
Moroch, Scott
Navratil, Petr
Nazarewicz, Witold
Neyens, Gerda
Norrgard, Eric B
Nusgart, Nicholas
Pašteka, Lukáš F
N Petrov, Alexander
Plaß, Wolfgang R
Ready, Roy A
Pascal, Reiter Moritz
Reponen, Mikael
Rothe, Sebastian
Safronova, Marianna S
Scheidenerger, Christoph
Shindler, Andrea
Singh, Jaideep T
Skripnikov, Leonid V
Titov, Anatoly V
Udrescu, Silviu-Marian
Wilkins, Shane G
Yang, Xiaofei
Julkaisu
2024
Saatavilla Open Access kautta

Sensors
Ge, Zhuang
Julkaisu
2024
Saatavilla Open Access kautta

Physics Letters B
Hukkanen, M.
Ryssens, W.
Ascher, P.
Bender, M.
Eronen, T.
Grévy, S.
Kankainen, A.
Stryjczyk, M.
Beliuskina, O.
Ge, Z.
Geldhof, S.
Gerbaux, M.
Gins, W.
Husson, A.
Nesterenko, D.A.
Raggio, A.
Reponen, M.
Rinta-Antila, S.
Romero, J.
de Roubin, A.
Virtanen, V.
Zadvornaya, A.

°Õ³Ü³Ù°ì¾±³¾³Ü²õ°ù²â³ó³¾Ã¤

°Õ³Ü³Ù°ì¾±³¾³Ü²õ°ù²â³ó³¾Ã¤n vetäjät