MATS112 Mitta- ja integraaliteoria 2 (4 op)
Osaamistavoitteet
Opintojakson suorittamisen jälkeen opiskelija
-tuntee perusasiat L^p avaruuksista (erityisesti L^2 avaruudesta) .
-hallitsee yleisen ulkomitan määrittelyn ja perusominaisuudet sekä Caratheodoryn ehdon mitallisuudelle
-hallitsee mitallisen funktion määritelmän ja mitallisten funktioiden struktuurin abstraktissa mitta-avaruudessa (osaa yleistää kurssin alkuosan teorian yleiseen mitta-avaruuteen).
-tuntee Hausdorffin mitan perusteet.
Suoritustavat
Kurssitentti ja kirjalliset harjoitustehtävät tai lopputentti
³§¾±²õä±ô³Ùö
Lp -avaruudet, yleiset mitta-avaruudet, mitalliset funktiot ja integraalit, s-ulotteinen Hausdorffin mitta.
Oppimateriaalit
Kilpeläinen: Mitta- ja integraaliteoria (luentomoniste)
Kirjallisuus
ISBN-numero | Tekijä, julkaisuvuosi, teoksen nimi, julkaisija |
---|---|
Avner Friedman: Foundations of Modern Analysis. | |
Andrew M. Bruckner, Judith B. Bruckner & Brian S. Thomson: Real Analysis, 2008, www.classicalrealanalysis.com |
Esitietovaatimukset
Johd. matem analyysiin 3, Vektoricalculus 2,
Vektorianalyysi 1 ja 2, Mitta- ja integraaliteoria 1